Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9501, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664436

ABSTRACT

The use of various kinds of magnetic resonance imaging (MRI) techniques for examining brain tissue has increased significantly in recent years, and manual investigation of each of the resulting images can be a time-consuming task. This paper presents an automatic brain-tumor diagnosis system that uses a CNN for detection, classification, and segmentation of glioblastomas; the latter stage seeks to segment tumors inside glioma MRI images. The structure of the developed multi-unit system consists of two stages. The first stage is responsible for tumor detection and classification by categorizing brain MRI images into normal, high-grade glioma (glioblastoma), and low-grade glioma. The uniqueness of the proposed network lies in its use of different levels of features, including local and global paths. The second stage is responsible for tumor segmentation, and skip connections and residual units are used during this step. Using 1800 images extracted from the BraTS 2017 dataset, the detection and classification stage was found to achieve a maximum accuracy of 99%. The segmentation stage was then evaluated using the Dice score, specificity, and sensitivity. The results showed that the suggested deep-learning-based system ranks highest among a variety of different strategies reported in the literature.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/diagnosis , Magnetic Resonance Imaging/methods , Deep Learning , Glioma/diagnostic imaging , Glioma/pathology , Glioma/diagnosis , Glioblastoma/diagnostic imaging , Glioblastoma/diagnosis , Glioblastoma/pathology , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Brain/pathology , Image Interpretation, Computer-Assisted/methods
2.
Opt Express ; 30(21): 37816-37832, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258363

ABSTRACT

The security issue is essential in the Internet-of-Things (IoT) environment. Biometrics play an important role in securing the emerging IoT devices, especially IoT robots. Biometric identification is an interesting candidate to improve IoT usability and security. To access and control sensitive environments like IoT, passwords are not recommended for high security levels. Biometrics can be used instead, but more protection is needed to store original biometrics away from invaders. This paper presents a cancelable multimodal biometric recognition system based on encryption algorithms and watermarking. Both voice-print and facial images are used as individual biometrics. Double Random Phase Encoding (DRPE) and chaotic Baker map are utilized as encryption algorithms. Verification is performed by estimating the correlation between registered and tested models in their cancelable format. Simulation results give Equal Error Rate (EER) values close to zero and Area under the Receiver Operator Characteristic Curve (AROC) equal to one, which indicates the high performance of the proposed system in addition to the difficulty to invert cancelable templates. Moreover, reusability and diversity of biometric templates is guaranteed.

3.
Appl Opt ; 61(4): 875-883, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35201055

ABSTRACT

Two schemes for optical wireless modulation format recognition (MFR), based on the orthogonal-triangular decomposition (OTD) and Hough transform (HT) of the constellation diagrams, are proposed in this paper. Constellation diagrams are obtained at optical signal-to-noise ratios (OSNRs) ranging from 5 to 30 dB for seven different modulation formats (2/4/8/16-PSK and 8/16/32-QAM) as images. The first scheme depends on applying the HT of the obtained images; the second scheme is based on utilization of the decomposition of each of the obtained image matrices into an orthogonal matrix (Q) and an upper triangular matrix (R) followed by the HT. Different classifiers, including AlexNet, VGG16, and VGG19, are used for the MFR task. Model setups and results are provided to study the scheme efficiency at different levels of OSNR. The proposed schemes provide unique signatures for constellation diagrams. Moreover, it reveals that the main pattern corresponding to each constellation diagram is more distinguishable for both proposed schemes at different levels of OSNR. The obtained results achieve high accuracy at low OSNR values.

4.
Int J Numer Method Biomed Eng ; 38(1): e3530, 2022 01.
Article in English | MEDLINE | ID: mdl-34506081

ABSTRACT

Deep learning is one of the most promising machine learning techniques that revolutionalized the artificial intelligence field. The known traditional and convolutional neural networks (CNNs) have been utilized in medical pattern recognition applications that depend on deep learning concepts. This is attributed to the importance of anomaly detection (AD) in automatic diagnosis systems. In this paper, the AD is performed on medical electroencephalography (EEG) signal spectrograms and medical corneal images for Internet of medical things (IoMT) systems. Deep learning based on the CNN models is employed for this task with training and testing phases. Each input image passes through a series of convolution layers with different kernel filters. For the classification task, pooling and fully-connected layers are utilized. Computer simulation experiments reveal the success and superiority of the proposed models for automated medical diagnosis in IoMT systems.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Computer Simulation , Internet , Machine Learning
5.
Appl Opt ; 60(30): 9380-9389, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34807076

ABSTRACT

High-speed wireless communication is necessary in our personal lives, in both working and living spaces. This paper presents a scheme for wireless optical modulation format recognition (MFR) based on the Hough transform (HT). The HT is used to project constellation diagrams onto another space for efficient feature extraction. Constellation diagrams are obtained at optical signal-to-noise ratios (OSNR) ranging from 5 to 30 dB for eight different modulation formats (2/4/8/16 phase-shift keying and 8/16/32/64 QAM). Different classifiers are used for the task of MFR: AlexNet, VGG16, and VGG19. A study of the effect of varying the number of samples on the accuracy of the classifiers is provided for each modulation format. To evaluate the proposed scheme, the efficiency of the three classifiers is studied at different values of OSNR. The obtained results reveal that the proposed scheme succeeds in identifying the wireless optical modulation format blindly with a classification accuracy up to 100%, even at low OSNR values less than 10 dB.

6.
Appl Opt ; 60(13): 3659-3667, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33983298

ABSTRACT

This paper presents a new trend in biometric security systems, which is cancelable multi-biometrics. In general, traditional biometric systems depend on a single biometric for identification. These traditional systems are subject to different types of attacks. In addition, a biometric signature may be lost in hacking scenarios; for example, in the case of intrusion, biometric signatures can be stolen forever. To reduce the risk of losing biometric signatures, the trend of cancelable biometrics has evolved by using either deformed or encrypted versions of biometrics for verification. In this paper, several biometric traits for the same person are treated to obtain a single cancelable template. First, optical scanning holography (OSH) is applied during the acquisition of each biometric. The resulting outputs are then compressed simultaneously to generate a unified template based on the energy compaction property of the discrete cosine transform (DCT). Hence, the OSH is used in the proposed approach as a tool to generate deformed versions of human biometrics in order to get the unified biometric template through DCT compression. With this approach, we guarantee the possibility of using multiple biometrics of the same user to increase security, as well as privacy of the new biometric template through utilization of the OSH. Simulation results prove the robustness of the proposed cancelable multi-biometric approach in noisy environments.


Subject(s)
Biometry/methods , Computer Security , Data Compression/methods , Holography/methods , Computer Simulation , Dermatoglyphics , Hand , Humans , Iris , ROC Curve
7.
Appl Opt ; 60(13): 3977-3988, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33983337

ABSTRACT

Underwater localization using visible-light communications is proposed based on neural networks (NNs) estimation of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN training. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tracing software, where we configure 40,000 receivers in a $100\;{\rm m} \times 100\;{\rm m}$ area in order to measure the channel gain for each detector in seawater. The channel gains represent the input data set to the NN, while the output of the NN is the coordinates of each detector based on the RSS intensity technique. Next, an NN system is built and trained with the aid of Orange data mining software. Several trials for NN implementations are performed, and the best training algorithms, activation functions, and number of neurons are determined. In addition, several performance measures are considered in order to evaluate the robustness of the proposed network. Specifically, we evaluate the following parameters: classification accuracy (CA), area under the curve (AUC), training time, testing time, F1, precision, recall, logloss, and specificity. The corresponding measures are as follows: 99.1% for AUC and 98.7% for CA, F1, precision, and recall. Further, the performance results of logloss and specificity are 7.3% and 99.3% respectively.

8.
Int J Numer Method Biomed Eng ; 37(8): e3449, 2021 08.
Article in English | MEDLINE | ID: mdl-33599091

ABSTRACT

Brain tumor is a mass of anomalous cells in the brain. Medical imagining techniques have a vital role in the diagnosis of brain tumors. Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques are the most popular techniques to localize the tumor area. Brain tumor segmentation is very important for the diagnosis of tumors. In this paper, we introduce a framework to perform brain tumor segmentation, and then localize the region of the tumor, accurately. The proposed framework begins with the fusion of MR and CT images by the Non-Sub-Sampled Shearlet Transform (NSST) with the aid of the Modified Central Force Optimization (MCFO) to get the optimum fusion result from the quality metrics perspective. After that, image interpolation is applied to obtain a High-Resolution (HR) image from the Low-Resolution (LR) ones. The objective of the interpolation process is to enrich the details of the fusion result prior to segmentation. Finally, the threshold and the watershed segmentation are applied sequentially to localize the tumor region, clearly. The proposed framework enhances the efficiency of segmentation to help the specialists diagnose brain tumors.


Subject(s)
Algorithms , Brain Neoplasms , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Tomography, X-Ray Computed
9.
Microsc Res Tech ; 84(3): 394-414, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33350559

ABSTRACT

Automatic detection of maculopathy disease is a very important step to achieve high-accuracy results for the early discovery of the disease to help ophthalmologists to treat patients. Manual detection of diabetic maculopathy needs much effort and time from ophthalmologists. Detection of exudates from retinal images is applied for the maculopathy disease diagnosis. The first proposed framework in this paper for retinal image classification begins with fuzzy preprocessing in order to improve the original image to enhance the contrast between the objects and the background. After that, image segmentation is performed through binarization of the image to extract both blood vessels and the optic disc and then remove them from the original image. A gradient process is performed on the retinal image after this removal process for discrimination between normal and abnormal cases. Histogram of the gradients is estimated, and consequently the cumulative histogram of gradients is obtained and compared with a threshold cumulative histogram at certain bins. To determine the threshold cumulative histogram, cumulative histograms of images with exudates and images without exudates are obtained and averaged for each type, and the threshold cumulative histogram is set as the average of both cumulative histograms. Certain histogram bins are selected and thresholded according to the estimated threshold cumulative histogram, and the results are used for retinal image classification. In the second framework in this paper, a Convolutional Neural Network (CNN) is utilized to classify normal and abnormal cases.


Subject(s)
Diabetic Retinopathy , Optic Disk , Retinal Diseases , Algorithms , Diabetic Retinopathy/diagnostic imaging , Humans , Neural Networks, Computer , Retinal Diseases/diagnostic imaging
10.
Magn Reson Imaging ; 61: 300-318, 2019 09.
Article in English | MEDLINE | ID: mdl-31173851

ABSTRACT

The successful early diagnosis of brain tumors plays a major role in improving the treatment outcomes and thus improving patient survival. Manually evaluating the numerous magnetic resonance imaging (MRI) images produced routinely in the clinic is a difficult process. Thus, there is a crucial need for computer-aided methods with better accuracy for early tumor diagnosis. Computer-aided brain tumor diagnosis from MRI images consists of tumor detection, segmentation, and classification processes. Over the past few years, many studies have focused on traditional or classical machine learning techniques for brain tumor diagnosis. Recently, interest has developed in using deep learning techniques for diagnosing brain tumors with better accuracy and robustness. This study presents a comprehensive review of traditional machine learning techniques and evolving deep learning techniques for brain tumor diagnosis. This review paper identifies the key achievements reflected in the performance measurement metrics of the applied algorithms in the three diagnosis processes. In addition, this study discusses the key findings and draws attention to the lessons learned as a roadmap for future research.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging , Diagnosis, Computer-Assisted/methods , Machine Learning , Magnetic Resonance Imaging , Algorithms , Brain/pathology , Brain Neoplasms/pathology , Glioma/diagnostic imaging , Glioma/pathology , Humans , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...